We're Open
support@instaresearch.co.uk
+44 7340 9595 39
+44 20 3239 6980

Consider the following autocorrelation and partial autocorrelation coefficients estimated using 500 observations from a weakly sta

Information



  • Post Date 2018-11-10T08:09:33+00:00
  • Post Category Assignment

No Plagiarism Guarantee - 100% Custom Written

Order Details

Consider the following autocorrelation and partial autocorrelation coefficients estimated using 500 observations from a weakly stationary stochastic process

Question 3 [25 marks]

You estimate the model

_ = + _ + ,

using quarterly data. Results are reported in Table 1.

Table 1: OLS estimates using 174 observations

Dependent variable: Interest rate

 

Variable

Coefficient

Std. Error

t-Statistic

Prob.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONSTANT

0.045836

0.113503

0.403833

0.6869

 

INFLATION

0.204347

0.020596

9.921921

0.0000

 

OUTPUT GAP

0.022601

0.063539

0.355710

0.7225

 

 

 

 

 

 

 

 

 

 

 

R-squared

?

Mean dependent var

0.753494

 

Adjusted R-squared

?

S.D. dependent var

1.415286

 

S.E. of regression

1.114094

Akaike info criterion

3.072648

 

Sum squared resid

193.6281

Schwarz criterion

3.130552

 

Log likelihood

-241.2755

Hannan-Quinn criter.

3.096162

 

F-statistic

49.48873

Durbin-Watson stat

0.051860

 

Prob(F-statistic)

0.000000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)Are and statistically significant? Explain.

b)Calculate and adjusted using the results reported in Table 1. Discuss the two statistics and the results obtained.

Question 4 [25 marks]

a)Consider the following autocorrelation and partial autocorrelation coefficients estimated using 500 observations from a weakly stationary stochastic process :

Lag

ACF

PACF

 

 

 

 

 

 

1

0.307

0.307

2

-0.013

0.264

3

0.086

0.147

4

0.031

0.086

5

-0.019

0.049

 

 

 

 

 

 

3

Which of the autocorrelations are statistically significantly different from 0? Also, using both the Box-Pierce and the Ljung-Box test statistics, test the null hypothesis that the first five autocorrelations are all jointly equal to 0.

b)What process would you tentatively suggest could represent the most appropriate model for the series whose ACF and PACF are presented in part (a)? Explain your answer.

c)Two researchers are asked to estimate an ARMA model for a daily USD/GBP exchange rate return series,denoted . Researcher uses the Bayesian Information Criterion for determining the appropriate model and arrives at an

ARMA(0,1). Research uses Akaike’s Information Criterion which deems an

ARMA(2,0) to be optimal. The estimated models are

: ̂ = 0.38 + 0.10−1

: ̂ = 0.63 + 0.17−1 − 0.09−2

where is a White noiseprocess.

You are given the following data:

= 0.31,

−1 = 0.02,

−2 = −0.16

 

 

−1

= 0.13,

 

−2

= 0.19

Produce forecasts for=the−0.02,next

 

 

from both models.

days, i.e., for times + 1+ 2+ 3, and + 4,

d)How could you determine whether the models proposed in part (c) are adequate?

e)Suppose that the actual values of the series on days + 1+ 2+ 3, and + 4turned out to be 0.620.19−0.32, and 0.72, respectively. Determine which researcher’s model produced the most accurate forecasts.


Price: £ 99

100% Plagiarism Free & Custom Written, Tailored to your instructions